Maximum Entropy Boundaries in Lattice Boltzmann Method
نویسنده
چکیده
Vasili Baranau1 1. Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany Corresponding author: Vasili Baranau, [email protected] Abstract: We propose a universal approach in the framework of the lattice Boltzmann method (LBM) to modeling constant velocity constraints and constant temperature constraints on curved walls, which doesn’t depend on dimensionality, LBM scheme, boundary geometry; which is numerically stable, accurate and local and has a good physical background. This technique, called a maximum entropy method, utilizes the idea of recovering unknown populations on boundary nodes through minimizing node state deviation from equilibrium while assuring velocity or temperature restrictions. Also, theoretical justifications of a popular Zou-He boundaries technique and isothermal boundaries algorithm are provided on the basis of the method derived. Finally, while conducting numerical benchmarks, typical straight boundaries algorithm (Zou-He) was compared to a typical curved boundaries algorithm (Guo-Zheng).
منابع مشابه
Natural Convection and Entropy Generation in Γ-Shaped Enclosure Using Lattice Boltzmann Method
This work presents a numerical analysis of entropy generation in Γ-Shaped enclosure that was submitted to the natural convection process using a simple thermal lattice Boltzmann method (TLBM) with the Boussinesq approximation. A 2D thermal lattice Boltzmann method with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations are performed at a constant Prandtl number (Pr ...
متن کاملLattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection
The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a twodimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where the solid particles are treat...
متن کاملA Simplified Curved Boundary Condition in Stationary/Moving Boundaries for the Lattice Boltzmann Method
Lattice Boltzmann method is one of computational fluid dynamic subdivisions. Despite complicated mathematics involved in its background, end simple relations dominate on it; so in comparison to the conventional computational fluid dynamic methods, simpler computer programs are needed. Due to its characteristics for parallel programming, this method is considered efficient for the simulation of ...
متن کاملOptimization of 3-D natural convection around the isothermal cylinder using Taguchi method
This study discusses the application of Taguchi method in assessing minimum entropy generation and maximum heat transfer rate for natural convection in an enclosure embedded with isothermal cylinder. The simulations were planned based on Taguchi’s L25 orthogonal array with each trial performed under different conditions of position and aspect ratio (AR) of the cylinder. The thermal lattice Bolt...
متن کاملA novel boundary condition for the simulation of the submerged bodies using lattice boltzmann method
In this study, we proposed a novel scheme for the implementation of the no-slip boundary condition in thelattice Boltzmann method (LBM) . In detail , we have substituted the classical bounce-back idea by the direct immersed boundary specification . In this way we construct the equilibrium density functions in such a way that it feels the no-slip boundaries . Therefore , in fact a kind of equili...
متن کامل